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ABSTRACT

Data science courses and tutorials have grown popular in re-
cent years, yet they are still taught using production-grade
programming tools (e.g., R, MATLAB, and Python IDEs)
within desktop computing environments. Although powerful,
these tools present high barriers to entry for novices, forcing
them to grapple with the extrinsic complexities of software
installation and configuration, data file management, data
parsing, and Unix-like command-line interfaces. To lower
the barrier for novices to get started with learning data sci-
ence, we created DS.js, a bookmarklet that embeds a data
science programming environment directly into any existing
webpage. By transforming any webpage into an example-
centric IDE, DS.js eliminates the aforementioned complexi-
ties of desktop-based environments and turns the entire web
into a rich substrate for learning data science. DS.js automat-
ically parses HTML tables and CSV/TSV data sets on the tar-
get webpage, attaches code editors to each data set, provides
a data table manipulation and visualization API designed for
novices, and gives instructional scaffolding in the form of bi-
directional previews of how the user’s code and data relate.
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INTRODUCTION

Data science is now a highly in-demand skill across many
fields spanning engineering, scientific research, business,
marketing, health informatics, public policy, and data-driven
journalism [24]. In response to this surge in demand, uni-
versities are creating new data science majors [45], Massive
Open Online Courses (MOOCs) on data science are becom-
ing some of the most popular offerings [2], and professional
training bootcamps [4] are springing up around the world.
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However, despite the recent proliferation of new curricula
for data science education, these courses are still taught
using production-grade programming environments such as
MATLAB, RStudio for R, and the Jupyter Notebook for
Python, Julia, R, and other languages. These tools are often
situated within a Unix command-line environment to handle
data file management, script execution, and version control.

We found through formative interviews with data science in-
structors that these existing programming environments have
three main limitations when used for education: 1) they force
novices to grapple with the extrinsic burdens of software con-
figuration and data file management, along with the quirks
of full-blown IDEs and command-line interfaces, which de-
tract from the core learning goals of introductory data sci-
ence courses; 2) these tools are designed for professionals,
so they provide no instructional scaffolding to help novices
build mental models of how data manipulation APIs operate;
and 3) code, data, and exposition are separated, which makes
it harder to produce self-contained educational materials.

All of these limitations stem from the fact that students cur-
rently need to bring their data into monolithic environments
such as MATLAB or RStudio, but what if they could in-
stead bring a lightweight data science environment directly
to their data? In this paper, we explore this possibility with
a prototype bookmarklet (JavaScript bookmark) called DS.js,
which turns any webpage into a programming environment
for learning data science. Figure 1 shows a usage scenario:

(a) Browse to any webpage containing structured data, either
inline as HTML elements (e.g., tables, lists, divs) or linked
as external data files. Click the DS.js bookmarklet from
your bookmarks bar to inject a live programming environ-
ment directly into that webpage, which has access to all
data hosted on that webpage’s domain. DS.js eliminates
the burdens of installing software and managing data files.

(b) To help novices get started with analyzing data, DS.js uses
heuristics to automatically detect structured data sources
on the target webpage and parse them into JavaScript data
table objects. In addition, you can also use a GUI to inter-
actively select groups of webpage elements to parse.

(c) You can click on any parsed data source on the webpage
to attach an embedded JavaScript code editor to it. To help
you write analysis code to operate on that data, DS.js in-
cludes a JavaScript library suitable for introductory data
science, which mimics similar libraries for Python and R.





BACKGROUND AND RELATED WORK

DS.js introduces a new kind of example-centric programming
environment for novice data scientists, which draws inspira-
tion from prior work on end-user programming of webpages.

Background: Tabular Data is Central to Data Science

DS.js is mainly designed to help novices learn to work with
tabular data. Although raw data comes in many forms (e.g.,
geographical, hierarchical, freetext), data scientists prefer to
work with tables since they are the most suitable for con-
sumption by both analysis tools and programming environ-
ments [25, 28, 47]. For instance, spreadsheets, relational
databases, visual analytics tools like Tableau [42], and data
science libraries for programming languages such as R [47]
and Python [35] are all centered on manipulating tabular data.

The central data structure in DS.js is a table called DSTable
with methods for manipulating, transforming, combining, fil-
tering, and visualizing its elements (Table 1 shows its API).
We based its API on the open-source datascience.py [10]
Python library that is currently used to teach UC Berkeley’s
introductory data science courses. We chose this API since
it was specifically designed for pedagogy and has been re-
fined by testing on thousands of students over the past two
years. If more advanced users of DS.js want to work with
non-tabular data, DS.js allows them to visually select web-
page elements and write arbitrary JavaScript code (including
importing third-party libraries for screen scraping and text
parsing) to wrangle that data into tables for further analysis.

Programming Environments for Data Science

Data scientists often write code in integrated development en-
vironments (IDEs) or in text editors coupled with command-
line interfaces [29]. IDEs for data science integrate a code
editor, interactive shell, and data visualization panes. These
exist for a variety of languages including RStudio [11] for R,
Rodeo [13] for Python, MATLAB, and Mathematica. Data
scientists have also begun adopting notebook-based program-
ming environments such as the Jupyter (née IPython) Note-
book [9] and Tempe [22, 23], which allow them to mix textual
exposition, code, and visualizations into a sharable document.

Despite the popularity of these tools, they all require users to
acquire, store, and import data into them before starting ana-
lysis, which presents a barrier to novices who are unfamiliar
with data acquisition, parsing, and filesystem management.
Recently, web-based IDEs (WIDEs) such as cloud-powered
versions of Jupyter Notebooks [3, 7] take steps toward elimi-
nating some of these barriers to software installation and con-
figuration by hosting development environments in the cloud.

DS.js takes a complementary approach by acting like an
“inside-out IDE” that embeds a programming environment
directly into existing webpages. Since users can attach arbi-
trary numbers of DS.js code editors to each HTML table or
linked data file on the webpage, those editors resemble the
code blocks in Jupyter and Tempe notebooks – interspersing
runnable code within the context of data and exposition.

The most significant experiential distinction between pro-
gramming in DS.js versus in existing (W)IDEs is that DS.js

users do not ever start working with a blank slate in a code
editor; rather, they start programming in an example-centric
manner [17] by selectively sampling data on the current web-
page and writing code to operate on that data. Kato et al. [30]
survey additional examples of such example-centric program-
ming workflows that tightly bind code and data in context.

Beyond IDEs, recent research into augmenting programming
environments for data science introduce techniques that can
further expand the scope of DS.js. For instance, Variolite [31]
supports lightweight branching inside of a code editor to sup-
port fast exploration of code variants while performing data
analysis. CodeMend [40] helps data scientists refine visual-
izations in Python using graph plotting APIs by helping them
navigate through API functions and select suitable parameter
values via natural language queries. Wrangler [25, 28] allows
users to clean and reshape data tables using direct manipula-
tion without needing to write any code. A future version of
DS.js could benefit from integrating those features.

End-User Programming on Existing Webpages

Finally, DS.js is inspired by tools that enable novices and
end-users to manipulate the contents of existing webpages in-
situ. For instance, web browser extensions such as Chicken-
foot [15] and Greasemonkey [38] embed a code editor into
the browser sidebar, which allows users to write JavaScript to
alter the behavior of existing webpages. While these could in
theory be repurposed and extended to teach data science using
the web, they were originally designed for tasks such as web-
site customization and automation. Thus, they lack important
data-centric features of the DS.js programming environment
such as automatic parsing of HTML tables and CSV files into
table objects, bidirectional expression-level previews of table
transformations, and built-in visualizations.

In addition, other web browser extensions help end users
reformat existing webpages without writing any code:
Sifter [27] semi-automatically parses structured webpage
content and allows end users to add filtering and sorting func-
tionality. Reform [44] allows end users to attach lightweight
extensions to websites. Piggy Bank [26] scrapes HTML
on webpages that the user visits and restructures them into
RDF format for the Semantic Web. Marmite [48] and Veg-
emite [33] let users extract tabular data from websites into a
spreadsheet-like interface to create mashups. Vispedia [21]
is a bookmarklet that detects tables, lists, and infoboxes on
Wikipedia pages and allows end users to generate pre-set vi-
sualizations out of them without writing any code. Unlike
the aforementioned tools, which all target non-programmers,
DS.js offers a text-based coding environment so that stu-
dents can learn to write code to manipulate and visualize web
data. Although a simplified visual programming environment
could benefit greater numbers of end users, we wanted to de-
sign for students learning to write traditional text-based code.

FORMATIVE INTERVIEWS AND DESIGN GOALS

To discover limitations of current programming environments
for learning data science, we conducted formative interviews
on four data science instructors at large U.S. universities. All
four are tenure-track/tenured professors who regularly teach



large undergraduate data science courses with up to 500 stu-
dents per term. Two of them also teach a popular data sci-
ence MOOC (Massive Open Online Course) on Coursera.
All four teach using production-grade programming environ-
ments: two use a Python data science stack within the Jupyter
notebook, and two use R within the RStudio IDE. They put
example data sets on course websites for students to down-
load, manage, and analyze on their own computers. Their
main rationale for using these tools is that they feel that these
are what professional data scientists use. However, through-
out our interviews we discovered three recurring themes re-
garding the limitations of these tools when used in education:

Extrinsic software complexities: The most salient theme
mentioned by all four subjects was the difficulties of helping
students deal with the extrinsic complexities of installing, set-
ting up, and debugging software tools/libraries in ecosystems
surrounding R and Python across multiple operating systems
(e.g., Windows and Mac on personal computers, Linux on
university servers). Also, since most data science students
are not programmers or computer science majors, they are
unfamiliar with Unix-like command-line interfaces and the
minutiae of filesystem management (e.g., file types, file per-
missions, directory management, Unix vs. Windows line end-
ings, UTF-8 encodings) when managing data sets on disk.

The instructors were especially frustrated by the fact that all
of the time spent dealing with these issues was time taken
away from conveying the core pedagogical lessons of their in-
troductory data science courses; in other words, these issues
had nothing to do with data science, yet were necessary to
resolve since students were using complex software tools. To
address these recurring problems, the two Coursera instruc-
tors ended up creating a separate mini-course on software
tool and command-line setup that they made as a pre-requisite
for their introductory data science course [5]. Although this
worked well in a self-paced MOOC context, they said it was
unrealistic to expect university students to take an additional
course like this before taking their first data science course.

All four subjects were excited by the prospect of using a
more streamlined programming environment in data science
courses to get rid of these extrinsic complexities, but did not
know of any in existence. As a counterpoint, though, two
mentioned how they wanted students to eventually learn to
use production-grade tools and to learn to deal with these real-
world complexities, since professional data scientists need to
do so in their jobs. But they acknowledged that those skills
should probably not be emphasized in an introductory course.

Lack of instructional scaffolding: A secondary theme that
emerged from interviews was that data manipulation APIs
can be opaque and hard for novices to understand. Data sci-
ence code is often written as chains of functional (side-effect-
free) API calls that transform, filter, and aggregate data tables.
When that code is run within an IDE, Jupyter notebook, or
terminal, students see only the inputs and outputs, but not the
intermediate steps that were taken to transform the inputs into
the outputs. Students can manually break up sub-expressions
into separate statements and insert print statements to inspect
intermediate table state, but doing so is cumbersome.

The instructors wished that these APIs came with some form
of instructional scaffolding to help novices understand how
each function operates. On a related note, all four wished for
a simplified minimalist API for teaching data science so as not
to overwhelm novices with too many possibilities for how to
accomplish basic tasks. Currently, they use production-grade
data science APIs in R and Python but manually suggest a
subset of basic functions for students to use in class.

Code, data, and exposition are separated: Instructors also
mentioned the logistical hassles of keeping data sets, starter
code, and textual exposition in sync for their class materials.
Specifically, since data files must be acquired, downloaded,
and imported into tools, that data is far removed from their
original contexts. Instructors must also write expository text
in their lessons to explain the origins and formats of the ac-
quired data sets. We inferred that this loosely-coupled setup
could make it hard to produce self-contained materials, since
code, data sets, and exposition must be separately managed.

We reflected on the challenges uncovered by our interviews
to formulate a set of design goals for our DS.js prototype:

• D1: Minimize the extrinsic complexities of software instal-
lation/configuration and on-disk data file management.

• D2: Provide a minimalist data manipulation API.

• D3: Provide instructional scaffolding to show novices how
data manipulation API functions operate step-by-step.

• D4: Make it easy to share self-contained educational ma-
terials with code, data, and exposition bound together.

DS.JS SYSTEM DESIGN AND IMPLEMENTATION

DS.js is a bookmarklet with 2,500 lines of {Java|Type}Script
code. It also imports libraries such as jQuery, D3 [16] and
Vega-Lite [41] for visualizations, and NumJs [8] for numeri-
cal vector operations. We designed DS.js as a bookmarklet to
make it trivial for users to “install” by dragging its URL into
their browser’s bookmark bar. Unlike an extension, a book-
marklet works across all modern browsers and requires no in-
stallation or privileged permissions, which helps eliminate the
extrinsic complexities of software setup (Design Goal D1).

Activating DS.js and Automatically Finding Tabular Data

The user activates the DS.js bookmarklet by simply clicking
on it in the bookmark bar whenever their browser has loaded
a webpage containing data that they want to analyze. Upon
activation, DS.js immediately parses the HTML of the current
webpage and looks for tabular data within it. DS.js recognizes
tabular data from two common data sources:

• Links to CSV and TSV data files (comma- and tab-
separated values, respectively), which are commonly found
on websites that host tabular data sets (e.g., data.gov).

• HTML data tables, which are found on hundreds of mil-
lions of websites [19]. To distinguish between HTML ta-
bles that likely contain data and those that provide layout
support (in lieu of CSS), we use a simple heuristic: DS.js
parses only HTML tables whose cells do not contain any
nested tables. The parser ignores all markup and extracts
only the textual content within HTML table cells.













Subject Table Type and Description Table Size LOC API Methods Intermediate Tables Visualizations Code-to-Data Data-to-Code
S1 HTML: Moz500 top websites 500 × 7 17 9 7 6 1 16
S1 CSV: R demo data sets 6 × 2 3 2 1 1 0 0
S1 CSV: R demo data sets 7 × 7 9 7 6 2 4 10
S1 CSV: R demo data sets 89 × 2 5 4 2 2 1 3
S1 CSV: R demo data sets 248 × 8 6 3 1 1 0 2
S2 HTML: NBA statistics 50 × 15 8 6 4 1 2 12
S3 HTML: Moz500 top websites 500 × 7 12 8 16 1 0 12
S4 HTML: NBA statistics 50 × 15 1 1 0 1 0 6
S4 HTML: Wikipedia demographics 20 × 4 3 2 1 0 0 2
S4 HTML: Wikipedia demographics 11 × 5 6 5 3 3 0 9
S5 HTML: Wikipedia website stats 133 × 6 17 8 28 6 1 19
S6 HTML: Wikipedia website stats 133 × 6 8 6 4 3 0 17
S7 HTML: Wikipedia website stats 133 × 6 6 5 2 0 0 7
S7 HTML: Wikipedia demographics 8 × 3 4 3 2 1 0 5
S7 HTML: Wikipedia demographics 11 × 5 2 2 2 0 0 2
S8 HTML: Moz500 top websites 500 × 7 9 7 4 1 1 14
S8 HTML: Wikipedia supercomputers 35 × 6 12 7 6 1 0 16

Mean 8 5 5 2 1 9

Table 2. Each row summarizes a table that a user study subject analyzed with DS.js, showing its size (rows × columns), lines of code written (LOC), and

the numbers of unique DSTable API methods, intermediate tables, visualizations, and Code-to-Data/Data-to-Code previews used for the analysis.

In general, subjects expressed excitement about using DS.js
for introductory data science courses, although they felt that
more advanced use cases required production-grade tools.

Several subjects mentioned that if they did not have a tool
like DS.js, they would need to do a lot of tedious manual
work to download, import, and properly parse the desired
data. For example S5, who has TA’ed a data science course,
said: “DS.js is definitely helpful when showing live demos in
class, because I don’t need to write and debug extra code to
parse HTML tables, and I don’t even have to leave the web-
page.” Likewise, S7 said that she did not even know how to
start writing code to parse an HTML table in the first place.
S8, who has also TA’ed a data science course, also mentioned
that it would be useful for in-class live coding demos where
the instructor can pull up CSV data sets from any website and
start writing code to transform and visualize them.

Subjects pointed out the Code-to-Data and Data-to-Code pre-
views as unique and useful aspects of DS.js that they had not
seen in traditional environments. Table 2 shows that Data-to-
Code previews were used frequently as inline API references
(mean=9 times per analysis). Note that although Code-to-
Data previews were not used much in the open-ended task,
subjects made extensive use of them during the tutorial to ac-
quaint themselves with the DSTable API. Those with TA
experience reported that even if an expert knows the API well
and does not need these previews to help them code, visual
previews can still be helpful for teaching the API to others.

Subjects also said that the “zero-installation” feature of DS.js
made it convenient for doing “quick-and-dirty” impromptu
analyses, especially if they are demoing on a computer that is
not theirs since they may not want to install software on there.
All subjects felt that sharing DS.js code and analyses via a
URL was intuitive to them. Without this feature, they would
normally share their code, data, and visualizations either on
GitHub, by emailing source code and data/image files to their
colleagues, or by uploading them to shared cloud drives.

Subjects also conveyed their perceived limitations of DS.js
and cited situations in which they would want to use a more

traditional programming environment. First, even though
they liked the responsiveness of the live programming envi-
ronment, some wished to be able to “freeze-frame” certain in-
termediate tables and visualizations so that they can see more
than one at a time on-screen. Next, since DS.js comes only
with a basic DSTable API along with D3, Vega-Lite, and
NumJs, many still preferred the vast library ecosystem of R,
Python, or MATLAB for more complex analysis tasks. Fi-
nally, everyone acknowledged that while DS.js is well-suited
for writing code examples of the sort that would be appro-
priate for classes or online tutorials, they would probably not
use it for any large-scale production-grade analyses that they
would need to do for their research or internship projects.

CONCLUSION

With DS.js, we have carved out a new point in the design
space of programming tools for data scientists by focusing on
providing a low barrier to entry for novices. Our novel insight
is to leverage the abundance and diversity of structured data
on existing webpages to provide a zero-install embedded data
science programming environment as a bookmarklet. The de-
sign of DS.js was inspired by formative interviews with four
data science instructors and tested in an exploratory first-use
study on eight students. Our user study showed that students
found DS.js easy to use to create their own original analyses
and perceived it as being valuable in educational settings.

DS.js points toward a future where the entire web becomes an
example-centric substrate for learning data science. The sig-
nificance of our lightweight in-situ approach lies in its poten-
tial to motivate novices to practice data science using an en-
gaging and ubiquitous medium that they already interact with
daily: the web. Just like how breadboards lowered the barrier
for novices to experiment with electronic circuits without sol-
dering and how Processing [39] lowered the barrier for digital
artists to create interactive visual designs without becoming
expert programmers, DS.js aspires to enable similar sorts of
low-risk, impromptu, and joyful tinkering for data science.
More broadly, a future direction for DS.js is to extend it to
support citizen data scientists [34] by letting anyone quickly
prototype, share, and remix their analysis results on the web.
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